CSE-5368 Neural Networks \quad Spring 2024

Last Name	First Name	Student ID Number
Solution		

Prob \#	1	2	3	4	Total
Points	21	29	25	25	

Time: 80 Minutes

Seat Number:

CSE-5368 Neural Networks \quad Spring 2024 \quad Exam_01

Last Name	First Name	Student ID Number
Solution		

$$
\begin{aligned}
& F(\mathbf{x})=F\left(\mathbf{x}^{*}\right)+\left.\nabla F(\mathbf{x})^{T}\right|_{\mathbf{x}=\mathbf{x}^{*}}\left(\mathbf{x}-\mathbf{x}^{*}\right) \\
& +\left.\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \nabla^{2} F(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}}\left(\mathbf{x}-\mathbf{x}^{*}\right)+\cdots \\
& \frac{\mathbf{p}^{T} \nabla F(\mathbf{x})}{\|\mathbf{p}\|} \quad \frac{\mathbf{p}^{T} \nabla^{2} F(\mathbf{x}) \mathbf{p}}{\|\mathbf{p}\|^{2}} \quad \alpha_{k}=-\frac{\mathbf{g}_{k}^{T} \mathbf{p}_{k}}{\mathbf{p}_{k}^{T} \mathbf{A} \mathbf{p}_{k}} \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \mathbf{g}_{k} \quad \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \\
& L_{i}=\sum_{j \neq i} \max \left(0, y_{j}-y_{i}+\Delta\right) \\
& S\left(y_{i}\right)=\frac{e^{y_{i}}}{\sum_{j} e^{y_{j}}} \\
& H(p, q)=-\sum_{x} p(x) \log (q(x)) \\
& L_{i}=-\log \left(\frac{e^{y_{i}}}{\sum_{j} e^{y_{j}}}\right)
\end{aligned}
$$

CSE-5368 Neural Networks \quad Spring 2024

Last Name	First Name	Student ID Number
Solution		

1. Consider a convolutional neural network.

Note: Do NOT consider Biases.

Input layer:

Input to this CNN are color images of size $100 \times 70 \times 3$ with the batch size $=\mathbf{3 0}$
Note: Input image has different horizontal and vertical resolution.

Next layer is Conv2D layer:

Number of filters: 15, filter size: 9×9; stride: $\mathbf{3 x 3}$; padding: 4×4
Q1: What is the shape of the weight matrix for this layer?
Q1: $9 \times 9 \times 3 \times 15$
Q2: What is the shape of the output (tensor) of this layer?
Q2: $30 \times 34 \times 24 \times 15$

Next layer is Conv2D layer:

Number of filters: 10, filter size: 4×4; stride: $\mathbf{2 x 2}$; padding: 1x1
Q3: What is the shape of the weight matrix for this layer?
Q3: $4 \times 4 \times 15 \times 10$

Q4: What is the shape of the output (tensor) of this layer?
Q4: $30 \times 17 \times 12 \times 10$

Next layer is Flatten layer:

Q5: What is the shape of the output (tensor) for this layer?
Q5: 30×2040

Next layer is Dense layer:

Number of nodes: $\mathbf{5 0}$
Q6: What is the shape of the weight matrix for this layer?

Q7: What is the shape of the output (tensor) for this layer?

Q6: $\underline{2040 \times 50}$

Q7: $\quad 30 \times 50$
CSE-5368 Neural Networks \quad Spring $2024 \quad$ Exam_01

Last Name	First Name	Student ID Number
Solution		

Problem 1 Continued
CSE-5368 Neural Networks \quad Spring 2024

Last Name	First Name	Student ID Number
Solution		

2. Consider the expression:

$$
f(x, y)=\frac{x y}{35-\min \left(x y, x^{2}\right)}
$$

given the inputs: $x=5, \quad y=6$
Draw the computational graph and calculate the $\frac{\delta f(x, y)}{\delta x}$ and $\frac{\delta f(x, y)}{\delta y}$
For proper credit, you MUST SHOW all the numerical values for each node as they flow in the forward and backward path in the computational graph.

CSE-5368 Neural Networks \quad Spring $2024 \quad$ Exam_01

Last Name	First Name	Student ID Number
Solution		

Problem 2 Continued
CSE-5368 Neural Networks \quad Spring $2024 \quad$ Exam_01

Last Name	First Name	Student ID Number
Solution		

3. Using tensorflow, complete the following function to create and train a two-layer neural network. The first layer has 7 sigmoid nodes. The output layer has linear nodes. Loss function should be MSE. Anything not specified in the description should be inferred from the function's parameters and not hardcoded.
Code should include initializing weights, training loop with forward pass, gradient calculation, and weight updates.
You may assume the entire dataset is one batch.
```
DO NOT USE Keras
import numpy as np
import tensorflow as tf
def create_and_train_nn(X, Y, epochs, alpha):
"""
:param X: Array of input [n_samples,input_dimensions]
:param y: Array of desired outputs [n_samples , target_dimension].
:param epochs: number of epochs
:param alpha: Learning rate:
:return w1, w2 Weight matrices."""
```

```
w1=tf.Variable(np.random.randn((X.shape[1],7)))
```

w1=tf.Variable(np.random.randn((X.shape[1],7)))
b1=tf.Variable(np.random.randn((7)))
b1=tf.Variable(np.random.randn((7)))
w2=tf.Variable(np.zeros((7,Y.shape[1])))
w2=tf.Variable(np.zeros((7,Y.shape[1])))
b2=tf.Variable(np.random.randn((Y.shape[1])))
b2=tf.Variable(np.random.randn((Y.shape[1])))
for epoch in range(epochs):
for epoch in range(epochs):
with tf.GradientTape() as tape:
with tf.GradientTape() as tape:
y1=tf.sigmoid(tf.matmul(X,w1)+b1)
y1=tf.sigmoid(tf.matmul(X,w1)+b1)
y2=tf.matmul(y1,w2)+b2
y2=tf.matmul(y1,w2)+b2
loss=tf.reduce_mean(tf.square(Y-y2))
loss=tf.reduce_mean(tf.square(Y-y2))
dw1,dw2,db1,db2=tape.gradient(loss,[w1,w2,b1,b2])
dw1,dw2,db1,db2=tape.gradient(loss,[w1,w2,b1,b2])
w1.assign_sub(alpha*dw1)
w1.assign_sub(alpha*dw1)
w2.assign_sub(alpha*dw2)
w2.assign_sub(alpha*dw2)
b1.assign_sub(alpha*dw1)
b1.assign_sub(alpha*dw1)
b2.assign_sub(alpha*dw2)
b2.assign_sub(alpha*dw2)
return w1,w2

```
CSE-5368 Neural Networks \(\quad\) Spring 2024
\begin{tabular}{|c|c|c|}
\hline Last Name & First Name & Student ID Number \\
\hline Solution & & \\
\hline
\end{tabular}

Problem 3 Continued
\begin{tabular}{|c|c|c|}
\hline Last Name & First Name & Student ID Number \\
\hline Solution & & \\
\hline
\end{tabular}
4. Complete the code for the following function.

\section*{USE numpy only. DO NOT USE tensorflow or keras}
```

import numpy as np
def calculate_svm (yhat,yt):

This function calculates the SVM error for the entire data set

yhat: Array of actual outputs [num_of_samples,num_of_classes]

yt: Array of desired outputs [num_of_samples]

Each element of yt array is the index of the true class.

return: SVM for the entire data set (A single float number).

Return value is the average of all the SVMs for the samples.

Assume delta is equal to 1

 # Detail solution
 number_of_samples=yhat.shape[0]
 number_of_classes=yhat.shape[1]
 total_loss=0
 for sample_index in range(number_of_samples):
 target_class_index=yt[sample_index]
 yi=yhat[sample_index,yt[sample_index]]
 sample_loss=0
 for class_index in range(number_of_classes):
 if target_class_index==class_index:
 continue
 yj=yhat[sample_index,class_index]
 sample_loss=sample_loss+np.maximum(0,yj-yi+1)
 total_loss=total_loss+sample_loss
 total_loss=total_loss/number_of_samples
 return total_loss
 def calculate_svm_v2(yhat, yt):
\# More compact solution
total_loss = 0
for k in range(yt.shape[0]):
loss = np.maximum(0, yhat[k] - yhat[k][yt[k]]+1)
loss[yt[k]] =0
total_loss=total_loss+np.sum(loss)
return total_loss / yhat.shape[0]
def calculate_svm_v3(yhat, yt):
\# Another solution
total_loss = 0
for sample,target_index in zip(yhat,yt):
margins = np.maximum(0, sample - sample[target_index] + 1)
total_loss = total_loss + np.sum(margins) - 1
return total_loss / yhat.shape[0]

```
def calculate_svm_v4(yhat, yt):
    \# Most compact solution with numpy
    c=yhat.shape[0]
    return (np.sum(np.maximum (0, yhat-[yhat[np.arange \((c)[:, \operatorname{None}], y t . \operatorname{reshape}(c, 1)]]+1))-c) / c\)
CSE-5368 Neural Networks \(\quad\) Spring 2024 \(\quad\) Exam_01
\begin{tabular}{|c|c|c|}
\hline Last Name & First Name & Student ID Number \\
\hline Solution & & \\
\hline
\end{tabular}

Problem 4 Continued
\(\qquad\)
\(\qquad\)```

